Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors.

نویسندگان

  • Xiaoqiang Sun
  • Yunqing Kang
  • Jiguang Bao
  • Yuanyuan Zhang
  • Yunzhi Yang
  • Xiaobo Zhou
چکیده

Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...

متن کامل

Longitudinal performance of polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in large preclinical animal model: 6- versus 12 months

Objectives There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery (Yong et al. 2013). Here we report on 6vs 12month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone mor...

متن کامل

Biodegradable mesoporous delivery system for biomineralization precursors

Scaffold supplements such as nanoparticles, components of the extracellular matrix, or growth factors have been incorporated in conventional scaffold materials to produce smart scaffolds for tissue engineering of damaged hard tissues. Due to increasing concerns on the clinical side effects of using large doses of recombinant bone-morphogenetic protein-2 in bone surgery, it is desirable to devel...

متن کامل

Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.

Strategies to engineer bone have focused on the use of natural or synthetic degradable materials as scaffolds for cell transplantation or as substrates to guide bone regeneration. The basic requirements of the scaffold material are biocompatibility, degradability, mechanical integrity, and osteoconductivity. A major design problem is satisfying each of these requirements with a single scaffold ...

متن کامل

Development of an antibacterial porous scaffold for bone defect treatment

Background & Aim: The use of bone scaffolds is one of the new and efficient techniques for repairing bone defects that provide a suitable platform for cell proliferation and growth to repair the target tissue. One of the most important causes of failure of transplants and surgical procedures is the invasion of bacteria at the site of the complication and the development of severe infection. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 34 21  شماره 

صفحات  -

تاریخ انتشار 2013